Demand driven salt clean-up in a molten salt fast reactor – Defining a priority list
نویسندگان
چکیده
The PUREX technology based on aqueous processes is currently the leading reprocessing technology in nuclear energy systems. It seems to be the most developed and established process for light water reactor fuel and the use of solid fuel. However, demand driven development of the nuclear system opens the way to liquid fuelled reactors, and disruptive technology development through the application of an integrated fuel cycle with a direct link to reactor operation. The possibilities of this new concept for innovative reprocessing technology development are analysed, the boundary conditions are discussed, and the economic as well as the neutron physical optimization parameters of the process are elucidated. Reactor physical knowledge of the influence of different elements on the neutron economy of the reactor is required. Using an innovative study approach, an element priority list for the salt clean-up is developed, which indicates that separation of Neodymium and Caesium is desirable, as they contribute almost 50% to the loss of criticality. Separating Zirconium and Samarium in addition from the fuel salt would remove nearly 80% of the loss of criticality due to fission products. The theoretical study is followed by a qualitative discussion of the different, demand driven optimization strategies which could satisfy the conflicting interests of sustainable reactor operation, efficient chemical processing for the salt clean-up, and the related economic as well as chemical engineering consequences. A new, innovative approach of balancing the throughput through salt processing based on a low number of separation process steps is developed. Next steps for the development of an economically viable salt clean-up process are identified.
منابع مشابه
Pg. 1 of 1 Development Approaches for the Advanced High Temperature Reactor
The AHTR is a pool-type reactor with graphite matrix coated-particle fuel and a clean molten salt coolant [1]. Due to the very high thermal inertia provided by the pool configuration and molten-salt coolant of the AHTR, the thermal power of the AHTR can be substantially higher than an equivalent gas-cooled reactor, likely exceeding 2000 MW(t). The AHTR, with a molten-salt intermediate loop and ...
متن کاملThe Multiregion Molten - Salt Reactor Concept
The molten-salt reactor (MSR) concept is one of the most promising systems for the realisation of transmutation. The objective is the development of a transmutational technique along with a device implementing it, which yield higher transmutational efficiencies than that of the known procedures. The procedure is the multi-step transmutation, in which the transformation is carried out in several...
متن کاملNovel waste printed circuit board recycling process with molten salt
The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450-470 °C. The PCB rec...
متن کاملMolten-salt Reactor Chemistry
This document summarizes the large program of chemical research and development which led to selection of fuel and coolant compositions for the Molten-Salt Reactor Experiment (MSRE) and for subsequent reactors of this type. Chemical behavior of the LiF-BeFrZrFrUF4 fuel mixture and behavior of fission products during power operation of MSRE are presented. A discussion of the chemical reactions w...
متن کاملThe Advanced High-Temperature Reactor: High-Temperature Fuel, Molten Salt Coolant, and Liquid-Metal-Reactor Plant
The Advanced High-Temperature Reactor is a new reactor concept that combines four existing technologies in a new way: (1) coated-particle graphite-matrix nuclear fuels (traditionally used for helium-cooled reactors), (2) Brayton power cycles, (3) passive safety systems and plant designs from liquid-metal-cooled fast reactors, and (4) low-pressure molten-salt coolants with boiling points far abo...
متن کامل